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Abstract

I discuss a specific proposal for how to identify decohering paths in

a "wavefunction of the universe". The emphasis is on determinin 8 the

correlations among subsystems and then considering how these corre-

lations evolve. The proposal is similar to earlier ideas of $chrSdinger

and of Zeh, but in other ways it is closer to the "decoherence func-

tional" of GrifBths, Oran,s, and Gell-Mann and Hartle. There are

interesting differences with each of these which I discuss. In this pro-

posal, once a given coarse-graining is chosen, the candidate paths are

fixed in this scheme, and a single well defined number measures the

degree of &coherence for each path. The normal probability sum rules

are ezactly obeyed (instantaneously) by these paths regardless of the

level of decoherence. I also briefly discuss how one might quantify

some other aspects of =classicality". I stress the important role that

concrete calculations will play in testing tb_is and other proposals.

1 Introduction

When discussing the whole universe in terms of quantum physics one can not

appeal to an outside classical observer. The Copenhagen interpretation of
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quantum mechanics (seefor example {1,2,3,4,5})ismeaningless in such situ-

ations,and one usually considerssome version of the Everett interpretation

of quantum mechanics{6,71 . From this point of view the external classical

observersof the Copenhagen interpretationbecome subsystems whose behav-

ior is "sufficientlyclassical"but whose evolution isnone the lessdescribed

by the evolution of the whole wavefunction. There is no "collapse" of the

wavefunction during a measurement, but instead correlationsare established

between one subsystem and another "apparatus" subsystem.

One way in which quantum mechanics differsfrom classicalmechanics is

that it allows quantum interferenceto occur. Individual "classicalpaths"

or "histories"in general may not be regarded independently of one another.

For the Everett picture to work one must be able to identify subsystems

which do indeed follow classical paths, and which exhibit a negligible degree

of quantum interference. Specific examples which demonstrate how this "de-

coherence" can occur in quantum systems have been discussed by Joos and

Zeh[8], Caldelra and Leggett[9], Zurek[101, and Unruh and Zurek {11], and

these authors stress the role of correlations between the decohering systems

and the environment in producing decoherence. Still, they do not answer the

question: "How can one take a 'wavefunction of the universe' and identify

the subsystems which are decohering, and then place a quantitativemeasure

on theirdegree of decoherence?"

This question isof particul_ interestin cosmology, where one islead to

view our classicalworld as having emerged from a completely quantum epoch,

in which there may have been initiallyno classicalsubsystems around (see,

forexample, the pioneering work of Hawking, Hartle and Vilenkin 112,13,14]).

Itislikelythat a betterunderstanding of the emergence of classicalbehavior

from a fundamentally quantum world willimprove our understanding of the

originsof the universe, and this perspective has caused increased interest

in the phenomenon of decoherence. The importance of this issue in cos-

mology has been emphasized by Joos{15],Zeh{16}, Keller[17],HaUiwell[181,

Vilenkin[19],and Unruh and Zurek[11].

A general scheme for identifyingdecohering historieswithin a wavefunc-

'_ionhas been proposed by Griffithsi20!,Omnes[21.22.231, and Gcll-Mann

and Hartle [241,using a "decoherence functional". Gell-Mann and Hartle

also stress the importance for these decohering historiesto exhibit other

classicalqualitieswhich decoherence alone does not insure. We observe in



our world not only decoherence, but the validity of simple classical laws in

describing the time dependence of the decohering histories.

In another approach, Zeh[25] has advocated the use of the "Schmidt

orthogonal form" for identifyin 8 "macroscopic" subsystems. Much earlier,

Schr6dinger{26 ] had noted that the Schmidt orthogonal form nicely exhibits

the correlations that are present between any two subsystems. Although

I was not familiar with reference [25] until this work was completed, the

scheme presented in this article has many similarities with the one advo-

cated by Zeh, and might be best viewed as a modest modification of it. The

main differences include the the way multiple subsystems are treated, and

the role played by the "branching" of classical worlds. Also, the discussion in

this paper is in terms of "decoherin8 paths", which makes comparison with

the decoherence functional approach more direct (see Section 9).

The thrust of the proposal is to first focus attention on "correlations

among subsystems". It is such correlations that make up a great deal of the

content of physics, from the description of a laboratory experiment to under-

standing mechanisms of decoherence. The mathematical results of Schmidt

can be used to show how any subdivision of the universe into subsystems re-

suits in precisely defined correlations being present. The next step, in relating

these formal correlations to physical reality, is to ask if these correlations (or

"Schmidt paths ") evolve in a regular manner with time (in general they

do not). In this picture a "classical domain" is a collection of subsystems

whose correlations evolve in a reliable manner with respect to one another.

I show that a natural requirement for decoherence, that paths have well de-

fined probabilities, is equivalent to demanding that the correlations evolve

unitaril_l.

The emphasis I give to "decohering coarse grained histories" and to the

existence of quasi-classical domains independently of "conscious observers" is

the same as that of Gell-Mann and Hartle. None the less, there are technical

changes which stem from shifting the focus more directly onto the correla-

tions among subsystems. These changes may clarify some important concep-

tual issues. I also discuss possible weaknesses of the decoherence functional

approach which this approach avoids.

The Schmidt paths approach has potential weaknesses of its own, which I

discuss. I explain how the proposal must be tested, and I show how one good

counter example can discredit this proposal. (I also argue, contrary to the



authors, that a calculation by Joos and Zeh in {8] is not good counter example

due to an inappropriate approximation which is made) My view is that both

the Schmidt paths and the decoherence functional approaches need to be

tested out on some well understood examples. Because of the important role

of correlations in physics, the process of testin 8 the Schmidt paths approach

should be particulary instructive, no matter what the outcome.

Like the other authors, I consider a "universe" described by a pure state

or density matrix whose evolution is described by a Hermitian Hami/tonian.

Thus, for this paper I assume a truly classical background space time. I

also assume that the Hilbert space is discrete and finite, which simplifies the

notation and, for all we know, is actually the case. Thus, I am assumin 8 that

the continuous parameters we use to describe the physical world are either

well approximated by closely spaced discrete parameters, or are actually

approximations themselves of a world which is fundamentally discrete. I

work in the Schr6dinger picture, and I discuss in Section 7.2 why I feel it

is more suitable than the Heisenberg picture when discussing truly closed

quantum systems.

The paper is organized as follows: Sections 2 - 5 set up conventions and

describe the the proposal. Section 6 shows how the proposal would apply

to some familiar physical situations. In Section 7 the proposal is elaborated

further, and ways of quantifying other aspects of classicality are briefly dis-

cussed. Section 8 describes crucial tests which must be performed, and points

out some possible weak points of the proposal. A direct comparison with the

"decoherence functional" (including a brief review of this approach) is pro-

vided in Section 9, and I discuss some possible weak points of the decoherence

functional as well. Section t0 gives my conclusions.

2 Coarse graining and the system/environment
distinction

We discuss the world around us in terms of subsystems which are sufficiently

i._olated from the rest of the universe to assume their own identitv. \Ve then

speak of the deviations from pure isolation as "interactions". If we think of

a basis { [i)} which spans the Hilbert space of the universe, the division into
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"subsystem" and "rest of the universe"' is accomplished by a re-labeling:

li)= = Ij(i)), ®Ik(i)), (for ui). (1)

In this way we think of the whole HJlbert space as a direct product space of

a space corresponding to the subsystem (subscript %") with a space corre-

sponding to the rest of the universe (subscript %" for "environment"). This

division into subsystems is absolutely central to our whole understanding of

the world, and in fact we have no way to attach meaning to the un-subdivided

"Halbert space of the universe" {li)} labeled as such.

In practice, of course, we do not stop at dividing the Halbert space in two,

but discuss a multitude of subsystems. The notion of a "degree of freedom"

q essentially just involves the identification of a subspace with a basis labeled

by q.

If one limits one's attention to one subspace by considering operators

which are only non-trivial in that subspace,

d-O.®L, (2)

(it, is the identity operator in the environment subspace) then one in effect

isworking with a density matrix, po, for that subspace.

p. -- U-,p,,= tr. (Iq,.)(q,.I) (3)

where tr, represents tracing over the environment subspace. I assume that

the universe is in a pure state, t_), but we shall see in Section 7.3 that the

discussion is easily generalized for the mixed state case.

Coarse graining is an important notion in physics. It involves working

with quantities which are averaged in some way, so as to exclude informa-

tion which is irrelevant to the physical problem at hand. Coarse graining is

nothing other than a particular case of the subdivision of the universe into

subsystems. Typically some "collectivecoordinate" (such as a fieldaveraged

over a spatialregion) isone subsystem, whereas the relativecoordinates are

part of the "environment" which is traced over. The coarse graining of a

fieldvalue into ranges of fieldvalues can be thought of as taking a sub-

space spanned by {Iff)I'_E I-oo, oc!} and subdividing itfurther by taking

1_) = 1i(¢))® 18(q_)) where i(_) and 0(_) are the integer and fractional parts



of cI, in some units. When the 0 subspace is traced over one has achieved a

coarse graining into ranges of _ values. There are many examples of divisions

into subsystems which are not normally called coarse grainings, but formally

the two are the same and I will, for the most part, not make any distinction

for this article.

Advocates of the decoherence functional discuss coarse graining in time as

well, which does not fall into the general "division into subsystems" frame-

work. I will not use this type of coarse graining in my discussion and I

will deal with the qualitative issues addressed by coarse graining in time in

another manner. In Section 9 I will discuss this question further, and ex-

press concerns that the use of explicit coarse graining in time can cause some

serious problems.

3 Correlations between subsystems and the

Schmidt orthogonal basis

In order for a subsystem to "be in a pure state", one conventionally writes

the wavefunction of the universe in product form

= !f), tg),. (4)

This form means there are no correlations between the system and environ-

ment. It is a very special case for (4) to be true, since one might expect a

"typical" wavefunction to have mostly non-zero coefficients in the expansion

j,k

(5)

which would certainly not be equivalent to (4). The fact that we ever get

to use wavefuuctions of the product form in physics says there is something

special about the state of the universe (and the subsystems we have chosen

to divide it up into).

There exists a special basis called the Schmidt orthogonal basisi27.26] in

which the expansion of a general wavefunction looks simpler than (5). The

Schmidt orthogonal basis for a subsystem is none other than the eigenba-

sis of p0, which being Hermitian, can always be diagonalized producing real
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eigenvaluesp(#)and the eigenbasis {lj),s}.(Throughout this paper the su-

perscript"S" indicates a Schmidt orthogonal basis vector.) Likewise, one

can construct the density matrix of the environment

p, -- (6)

and diagonalize it (producing {]k)S}). The interesting thing is that the

eigenvalues of p0 and p, are always identical (assuming the universe is in a

pure state), with additional zero eigenvalues for the larger matrix. Because

of this fact, the direct product states of the two eigenbases form a special

basis and the expansion of [9_) in this basis gives

I¢.)
i

S S S 5= ×I*).I*).+ ×12).12),+. (7)

The reason that a general state (Eq (5)) does not look like a product state (Eq

(4)) is because in general there are correlations between the subsystem and

the environment. The Schmidt orthogonal basis resolves these correlations in

a nice way, because each subsystem basis vector is correlated with a unique

environment basis vector, as depicted in Eq (7). Note that there are far

fewer terms in Eq (7) than in the expansion in a "typical" basis (Eq (5)).

The number of terms in the Schmidt expansion equals the size of the smaller

subspace, where in the more general case the number of terms is the product

of the the two subspace sizes.

In the standard discussions of decoherence [8,9,10,11] much emphasis is

placed on the smallness of the off diagonal elements of p,. In particular, the

role of correlations between system and environment in suppressing these ma-

trix elements is stressed. For example in [10] Zurek writes something similar

to Eq (7) except that the environment states, [i)s, are only approximately

orthogonal. The sizes of the of[ diagonal dements of po are then proportional

to the deviations from true orthogonality of the environment states.

It might naively appear that by explicitly diagonaiizing p, the off diagonal

elements are set to zero with no reference to correlations with the environ-

ment. This is definitely not the case, however, since those very correlations

help determine p0 and thus influence which subsystem basis is the eigenbasis
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of p,. In fact, because of the specialform of the Sckmidt orthogonal ex-

psasion (Eq (7)), the Schmidt basis is probably the most concrete way of

discussingcorrelationsbetween a subsystem and itsenvironment.

4 Schmidt paths and the measure of coher-

ence

Although the existence of decoherence is commonly associated with the van-

isking of off diagonal elements of p,, that is clearly not the whole story. If it

were, one would always have decoherence since one can always diagonalize

p,. The problem is that in general the Schmidt basis is redefined in some

complicated way at every moment in time as I_bu) (and thus p,) evolves.

The Schmidt basis will not in general coincide with eigenstates of a prac-

tical measurement apparatus. This fact allows the formalism to describe

the usual array of quantum interference phenomena, despite one's ability to

always diagonalize p,.

As advocates of the decoherence functional have emphasized, it is useful to

consider sets of deeohering patios, which do not interfere among each other.

The lack of interference allows one to assign relative probabilities to the

differentpaths which add in the usual way.

As a starting point toward this end I construct what I call "Schmidt

paths", which in general are not decohering. I assume that the universe is

wellbehaved enough that the eigenvaluesp(0 evolve in a continuous manner

with time. This being the case,I can choose the index "i" to remain fixedas

p(')evolves,so p(i)(t)isa continuous function of t.Any re_dlsticdegeneracies

can be resolved by requiting that the first (and perhaps higher) derivatives

are continuous as well. Then the corresponding eigenstates

$li,t>, (s)

definea path parameterized by t. (I shallmention later the possibilityof

definingpaths in terms of continuity of the Schmidt basis states,instead of

the p(i)'s,but the idea ismuch the same)

One expects to be ableto assigndefiniteprobabilitiesto decohcring paths,

and thereiscertainlynothing about the Schmidt paths which invitesthis.In



general, the p{i)'s might be expected to vary wildly in time, and no particular

probability for the whole path would suggest itself. However, if

p(i)_ const. (9)

then p(i) itself it the obvious candidate for the probability for the whole path.

More precisdy, I define

Apf0(tl, t2)

C(i)(tl,t2) =_ p..(i)(tl,t,) , (10)

where Ap(1)(tl)t2) is defined to be the difference between the maximum and

minimum values taken by p(i) in the time interval [tl, t2], and _0(tl, t2) is the

average value. I intentionally avoid defining C in terms of l_(i), since I expect

rapid time variation is ok as long as the arapli_ude of the variation is small

I propose C(1)(tl,t2) as a measmre of the coherence between the path

labded by i and the other Schmidt paths over the time interval [tx, t2]. The

smalhr C is, the more completely the path decoheres. This formalism easily

accommodates the possibility that there is some Schmidt path defined at all

times, which is only decohering over some more limited time range(s).

Requiting that C be small does not prevent the Schmidt basis from evolv-

ing in time. However, to the extent that C is small, the evolution of the

Schmidt orthogonal states is unitary, since it is unitary eigenbasis evolution

which which corresponds the eigenvalues going unchanged. The nearly uni-

tary evolution of a path with sm_n C caJa be regarded as representing the

dynamics of that path, although in general there is no reason to expect these

dynamics to be simple. The generator of the unitary time evolution will in

general be time dependent.

5 Multiple Subsystems

This formalism is easily generalized to the case of multiple subsystems. Start-

ing with the division into two subsystems, as depicted in Eq (7):

li)2 + Vi_',,l : _/pIi)× ill s s p(2) x 121s s112)2 --? • ... (li)

(with the two subsystems labeled 1 and 2 instead of s and e), one can take

any subspace state that appears (say tl)S), regard it just as we (lid I_,A, and



start the procedure again:

.$ .$

11)_= _ VFi,,2)× 4,)(,,,),,I_)(,,,),,
i

(12)

or

11)_

+ pV/_×12)fl2)'_

(13)

The label(1;2) has been added in Eq (12) to identifythat thisisan expansion

of state number I, subsystem number 2, from Eq (11). Equation (13) is a

streamlined expression designed to clarifythe basic form of the expansion.

The reader should be warned that whenever the tilde("'") appears (as it

does in Eq (13)) the notation has been streamlined forthe sake of conceptual

clarity.Directly above such an expression will be a technicallyprecise(but

perhaps more confusing) form of the same equation.

One can insert Eq (12) into Eq (11) to get

[,E _ .s .sl_,,) _ _ x Ii)f ® Vp(,{2) x I.;)(,_2).,= b)(i;2),_ (14)

or

I_.> =

- 1+ _/_c2)×121f12)_+....

[_v_ s s+ pV/-_ x i2)f ® x I1)_.11)i

+ ×I lfl l +-...]

or,multiplying everything out:

(15)

I.,3

(16)

I0



or

t u)

×

The procedure can be repeated many times producing a whole hierar-

chy of subdivisions. The state labeled sIrn)(_;j),(h;0,,, comes from taking the

i ts Schraidt orthogonal state for subsystem ] in the first subdivision, subdi-

viding further end taking the/¢_ Schmidt orthogonal state of subsystem l,

and after one final subdivision, taking the rn _ state of the, _ subsystem.

Correspondin$1y there will be the eigenvalue labeled -(")_'(i_),(k;0"
Each term in Eq (17) may be regarded as a separate Schmidt path. These

paths represent histories of more than one subsystem. The probability for

each path will just be the product of both of the eigenvalues multiplying that

term. In this way each Schmidt path always has an instantaneous probability

associated with it.

For these paths to be fully decohering all the probabilities must be con-

stant and both g(O and t'(h) must be small. It is possible that the first level"(i;j)
of subdivision yields decohering paths while the second level does not. This

situation would occur if the ivi's were constant but the p(t_lh)'s were not. In(.
such a case Eq (17) would be a bad way of thinking about I_), and this fact

would be indicated by having large C_lh's However one could still "back• ) "

off_ one level, and view the wavefunction according to Eq (11). Since the

C(O's are small one still has a perfectly good set of decohering paths. One

just has fewer paths, since they are divided up into fewer subsystems.

For each subsystem the trace of the corresponding density matrix is al-

ways unity, so the instantaneous probabilities for the Schmidt paths always

obey the normal sum rules exactly. That means that if one does a "coarse

graining" by dropping one low level subdivision, the probability for each
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path will be the sum of the probabilities of all the "fine grained" paths which

become equivalent when the coarse graining is performed.

It should be remembered that at each level I am making a particular

choice of how to make further subdivisions. In general this choice is com-

pletely flexible, and any change in the subdivision scheme simply generates

a new set of Schmidt paths . Thus the states and elgenvalues really should

have an additional label which indicates the particular subdivision scheme

used.

6 Some familiar examples

In this section I apply the previous discussion to some familiar physical ex-

amples. In doing so, I hope to clarify how the proposal might be expected

to work, and what behavior it demands of the Schmidt paths . In Section 8

I turn the question around, and discuss how the behavior described in this

section must be explicitly exhibited in calculable systems before one can take

the Schmidt paths proposal seriously.

We describe physical "reality" in terms of a classical world. Even our

description of quantum mechanics revolves around the behavior of various

classical apparatuses in the laboratory. Interpreting a "wavefunction of the

umverse" amounts to identifying one or more "quasi-classical domains", such

as have been discussed by Ge]J-Mann and Hartle. These domains are sets

of subsystems which behave "sufficiently classically". The first requirement

for a subsystem to be sufficiently classical is that its path be sufficiently

decohering. That property is the subject of this paper. In addition, these

paths must have a high degree of regularity and predictability if they are to

describe our classical world.

In this Section I will assume the Schmidt paths scheme presented above

for the identification of decoherin 8 paths is correct. I will also assume that

we have available for inspection a wavefunction, Jib), for a large closed system

in which familiar physical situations arise. That is, there is a quasi-classical

domain for this system that takes on a familiar form. For example, there

might be two subsystems that we would recognize as two billiard balls by

the way they interact with one another, and perhaps even s third subsystem

which we would cail a billiards table, due to the nature of its interactions
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with the first two subsystems. We would also want something like a double

slit experiment which would allow us to examine the interface between the

quantum and clusical worlds.

6.1 Two billiard balls

To start with, I consider the simplest case of two billiard bails. First, as in

Eq (7), we subdivide the HUbert space into the first billiard b_ll subsystem

(subscript "bl") and the "rest of the universe", or environment:

S 8= × jl)  I1).÷ xJ2)  12).÷ .... (is)

The number of terms in this sum in general could equal the size of the

smaller of the two subspaces, which is probably going to be the billi_d ball

subspace. I really only want the bl subspace to represent the center of mass

coordinate, so if I_) were really "true to life", there would be subspaces

corresponding the relative coordinates of the individual atoms of the billiard

ball that would be included in the "environment" subspace. To satisfy the

decoherence requirement the C(i)'s must be very small over the time period

of interest.

One would llke to identify a particular basis of the bl subspace as "po-

sition". Let us call it {l_)bl}, where I am being true to my "discrete and

finite" conventions by giving position a discrete index "k". One can then

define the operator

- _ Iz,,)z,,(_,l (19)
k

and the position

zhCt ) = s_(t, il_li, t)a_ (20)

(Note that i labels Schmidt states and k labels positions.) As I have dis-

cussed, the time evolution of li, t)sa gives the dynamics which determine

zil(t ). In fact, when our system successfully describes a classical biLLiard

ball, the li, t)Sl's should be highly localized in the position basis, and for

practicaJ purposes we may regard the z_l(t)'s as representing the Schmidt

paths .

For the system i to describe a classical billiard ball, zh(t ) should obey

Newton's laws. In particular

f=m¢/ (21)
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should hold, where g is given by _i_(t). Of course, this will always be the

case if we define F suitably, and we could always attribute this force to the

action of the environment on the biRiard ba/1. However, one of the important

properties of our classical world is that forces can be attributed to other

classical subsystems interacting in some regular way.

At this point we further subdivide each Schm/dt state of the environ-

ment subspace into billiard ball number two (b2) and the rest of the original

environment subspace (e')

• 5 "5Ii)_ = _ "_ x b)(,,,),_,21.7)(,,,).,, (22)
• V _'(i_,)

3

Or

S $li)._ = _ × 11h-,11),.

+_V_ × '2)_,12),_,+'". (23)

just as was done in Eq (13). The whole wavefunction may now be written

= I:)(,,._.,,IJ)(,,._... (24)
tt3

or

I¢)

-_- o o o

4-...

1\$ 1_$ I1 _s
X /bl /b'2 /_,

× 11)_i12)_212).s,

× 12)_I11)_211),s,

x J2)_1 $ $121_'212)e

(25)

where each term represents a particular path involving both billiard balls.

.ks in the previous section, the equations with tildes arc streamlined versions

of the precise equations which appear above them.

The b2 subspace should also have a position basis, producing z_i;_),b2(t )

and Newton's laws should be obeyed here as well. For now, let us assume

14



that each billiard ball only experiences forces attributable to collisions with

the other ball. Let the interaction take the simple form of the elastic hard

sphere interaction at some fixed ball radius. One crucial requirement is that

for each path of bl there is well defined position for b2, so that the occurrence

of a collision is completely well defined. This feature is provided by the fact

that each Schmidt path, or term in Eq (25), is composed of paths for both

of the two billiard ball subsystems.

For example, in the first term of Eq (25) bl is on path 1, which is correlated

with b2 on its path I. Then one can ask: "Do the two paths, z_1(t), and

z(_,e),bz(t), represent the motion of billiard balls obeying Newton's laws and

only experiencing forces due to their mutual interaction?". If the answer is

"yes" , then one has identified two classical billiard balls within f_).

Classical measurement

We see here the essential ingredients of a classical measurement. The velocity

z_1 will be constant except at the moments when a collision with b2 occurs.

One could look at the instants when the velocity changes and "measure" the

presence of the second billiard ball, centered two ball radii away. Further

study of the vector change in _, would reveal more about the second ball.

Note that this classical "measurement" involves exploiting the predictable

dynamics of classical paths. The only way the issue of decoherence appears

is to insure that the classical systems remain classical. We will see that

decoherence plays a more central role in the case of quantum measurement.

Adding a subsystem

Having come this far, one can easily see how to add a billiard table. Again,

the environment (already reduced to e') is now subdivided further into the

billiard table subsystem bt and the rest of the environment e".

I .s I l[3)(i;.),b2{¢') = _ _vv"'Vp(h',)Vp(,;,),(i;,,)) x ti)Sl s s
i,j,k

(26)
or

= 11>b2t1> II>v
x------/

15



$ S 6 S× 11)b1II) -2X2) ,12) ,,

(27)

The Schmidt orthogonai decomposition insures that on each multiple-

subsystem path the three subsystems, bl, b2, and bt are each correlated with

well defined paths for the other two. One can then ask if the paths of bl,

b2, and bt evolve in time so as to describe the simple motions of two billiard

b_lls on a billiard table. If the tmswer again is "yes", then one has identified

this slightly more complex classical world within t_k).

Discussing the "branches"

This system exhibits mmay "branches" as represented by terms in Eq (27).

It might be the case that only one term or branch represents nice classical

behavior for bl, b2, mad bt, or perhaps many do. If the first term in Eq(27)

represents familiar classical behavior, one might in particular wonder about

the second term, which has the same states for the billiard balls, but a

different state for the table, orthogonai to the first. It would seem that the

path described by the second term is bound to not correspond to any classical

world we know. Onc should remember, however, that there is no need to use

the same basis for interpretation on every branch. The second term will

probably have a degree of reg_darity similar to that of the first term, mad

there could well be another "position basis" for the billiard table which is

the "right" one in this case. One would simply need the changes in zbl(t)

and zb2(t) (attributed to collisions with the table wall on the first path) to

be similarly associated with the proximity of the wall in the new basis for

the second path. Specific calculations are necessary to see what happens in

these situationsfor realistic systems.

This is quite different from the point of view expressed by Zeh{25 I. He

prefers to require that, for example, the second (and other) terms not be

present in Eq. (27), so that the multiple classical subsystems are uniquely

correlated with one another. I prefer to let all the terms be there, and

investigate the consequences. It is possible that the constraints Zeh imposes

will turn out to be necessary to allow decoherence to occur. On the other

hand, it may turn out that the presence of other terms helps decoherence,

even if perhaps all the terms do not represent nice classical paths.
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Onemight ask why have all the "extra baggage" of many terms when all

one wants is one classical system. One certainly could require all but one

set of the pi's in Eq (26) to be zero, leaving just the single classical "world".

From the classical point of view, the single term version would seem more

"economical", since the "extra baggage" was eliminated. From the quantum

point of view, one might have a c_f[erent notion of "economy". Reducing the

expansion of I_/to a single term requires imposing additional constraints,

whereas a nice classical system was already there before any such constraints

were imposed. Furthermore, when quantum processes affect the classical

world, the "extra" terms are required, as we shall see below.

The multiplicity of terms actually plays an important role in spontaneous

symmetry breaking. It allows the full wavefunction to have a symmetry

that is not exhibited in the classical domains. For example, the standard

wavefunction for matter believed to emerge from an inflationary cosmo|-

ogy is virtually homogeneous in space. The a pc/or/probability of finding

a galaxy in any location is independent of the location. It is crucial that

the inhomogene/ties represented in quantum fluctuations "become classical"

[28,29,30,31,32]. We see that the translational invariance is broken in our

classical world only because the local interactions which cause decoherence

cause the decohering paths to be localized ones, with the translational sym-

metry broken. The whole wavefunction can keep its translational symmetry

because it is a sum over many terms representing decohering paths localized

in different places.

To further iUustrate this point, note that we did not write

= (28)

to define the path of the billiard ball. If we had, and IV) had an inflationary

origin, we would have found some triviality like z(t) = 0 because of the

translational symmetry. Similarly, the multiple branches can be important

in more traditional examples of spontaneous symmetry breaking.

In this subsection I have sketched how the presence of a simple quasi-

classical domain would be reflected in the Schmidt paths . It basically re-

quires the subsystems in question to be decohering (small C). In addition,

substantial demands are made on other aspects of the dynamics to produce

simple classical behavior. This example illustrates the essential ingredients of
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arbitrarily large quasi-classical domains, which require more numerous well

behaved decoherin8 subsystems.

6.2 The double slit experiment

In the previous subsection I gave an illustration of classical behavior from

the point of view of the Schmidt paths . Now I would like to give another

illustration for a case when the quantum world noticeably affects the classical

domain.

I consider the familiar "double sllt experiment". One starts with a beam

of electrons which is directed toward a barrier. The barrier is impenetrable

except for two slits which are present on the scale of the deBroglie wavelength

of the electrons. The electrons evolve into a chara_:teristically quantum me-

chanical state when they pass through the slits, and the state is characterized

by quantum interference between electrons diffracting through the different

slits. If a detector is placed behind the barrier, the electron counts at dif-

ferent positions exhibit the peculiarities of the electron's quantum state. In

particular there are positions where very few electrons are detected, which is

where the diffracting electrons "destructively interfere".

Conditions can be achieved where the beam is emitting individual elec-

trons whose wave packets are well separated in space and time. Individual

electrons can be detected (or lost) before the next one is emitted. Still, the

same interference effects are observed.

I will now sketch how this experiment would look from the point of view

of the Schmidt paths . The setup includes a fairly large classical world from

which one assembles the various components of the experiment. Thus the for-

realism must include many decohering subsystems in order to represent this

classical world. I will lump all but the most interesting of these subsystems

into the "environment" subsystem.

In addition to the environment (e), I identify three other subsystems: The

electron (el), the barrier (b), and the detector (d). It will be useful to have

the joint electron-detector subsystem, el&d, present at an intermediate level.

The joint subsystem is then further subdivided into el and d. (In general.

any order of subdivision is possible, and it is up to you choose one that most

effectively exposes the physics which is going on) At the "initial" time (tl)
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the total wavcfunction can be written

i) _ (k)

×li, s s stl)(i_=),(j_=lkd),d

or

I ,t1>

J_ooe. (30)

I will begin the discussion when a single electron packet decouples from

the electron source (which is part of the environment subsystem). At this

stage the electron, the barrier, and the detector should All be decohering
(i) (J) (h)

on at least one Schmidt path, so at least one set of {C ,C(I_=),C(_.),(j,=_j.=E)}

(corresponding to one term in Eq (30)) should all be small. I will focus on

just one term in Eq (30), and call it term I. In reality if there is one term

that describes the experiment, there will be numerous others, differing only

bv the time when the electron leaves the source, for example.

As the electron approaches the barrier, the three systems will each evolve

in their own unitary way. The electron will propagate along, the barrier

will just sit there, and the detector will sit in some "ready" state. As the

electron puses through the barrier, the subsystems will continue to evolve

umtarily, and will remain independent from the point of view of decoherence.

The effective Hamiltonian describing the evolution of the electron wig repre-

sent the interaction with the barrier, and cause the electron state to change

(unitarily) into the diffracted form.

The "collapse" of the wavefunction
¢

When the diffracted electron wave "packet" reaches the detector things start

to change. The interactions between the el and d subsystems no longer pre-

serve their decohering status, although the joint electron-detector subsystem

(el&d) can remain decohering from everything else. One would then have to
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write

(31)

or

I_,,t2) x tl, t_)l, ll,t_),,ll, st2)a&d

s s s1, t_)b 12,t2)s,[2,t2),,,_,_
\ /

(32)

One could still perform the expansion of the electron aad detector subsystem:

lJ, s "/-(_) Ik, s st_, )(i;,),,ikd __, x- Vr(i;,),(j;d&d ) t_)(_;,),(j:,_kd), a[k,t_)(_;,),(j;,_ka), d (33)
h

or

tJ, st_, )(i;,),,l,-d = _× I1,t2)_ll,t2)_

S S+ PX/_x 12,t2);,12,t2)_

4-.o,. (34)

At tl thisexpansion would have resulted in further decohering subsystems.

But after the electron and the detector start to interact,one expects the
C(J,)
(i;,).(#;,i&d)sto become large,indicatingcoherence atthislevelof subdivision.

One is then forced to back offone leveland settlefor the paths represented

by Zq (31).

After a period of time, the electron and the detector may again decohere

from each other, at least on some paths. Some of the decohering paths will

represent the electron missing the detector and just flying by, leaving the

detector still in its "ready" (but nothing detected) state. Other terms will

represent the electron interacting with the detector and causing the detector

to signal an event.

In some interacting cases the electron and detector paths may remain co-

herent (signaled by some C remaining large). This would occur if that electron

became bound somewhere in the detector. Even the terms which represent
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the electron going undetected will have a different electron Schmidt orthogo-

nal states than if the detector was not there. That is because the correlations

set up with the detector change p,z, and thus the Schmidt orthogonal basis

in which it is diagonal.

There would be no path representing an electron passing through the

slits and going undetected which decohered over that entire time (unless

the detector and the electron states have no interaction on all paths). The

decohering paths for the electron simply stop decohering during the "men-

sarement" (when correlations are being established with the detector), and

re-emerge again later, in a different form. Daring this intermediate period

the evolution within the individual electron and detector subspaces is non-

unitary, even though the combined system can evolve uaitarily. This special

period, when the electron and detector are lost (as separate entities) to the

classical domain would correspond roughly to the period when the wavefunc-

tion "collapses" in the Copenhagen point of view.

6.3 Further discussion

At the level of decoherence, the interaction between the electron and the bar-

tier is completely equivalent to the interaction between the two billiard balls.

In each case the two subsystems maintain their decoherence, and thus their

independent identities. In the case of the billiard balls, the paths continue to

maintain the desired level of decoherence. The electron, however, goes on to

encounter the detector, and its decoherence is destroyed. If the world beyond

the barrier were a strange one, in which detectors interacted coherently with

double slit diffraction patterns, then the double slit experiment might look

more like the billiard ball problem.

Note that real world billiard balls are not immune to having their deco-

herence terminated. If a billiard ball roils into a furnace and is ionized, the

original biUi_rd ball subsystem becomes hopelessly coherent as the individual

ions interact with the environment.

More about branching

It is interesting to think about the emergence and loss of quantum coherence

in terms of "branching" of decohering paths. When the detector and the
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electron started interacting in the double slit experiment, the total number

of decohering paths decreased. This was because one level of subdivision

(or "fine graining") was lost, so there were simply fewer labels to distribute

among the decohering paths. Pairs of decohering Schmidt orthogonal paths

that were once distinguished from one another by their particular electron

and detector paths became lumped together, since the joint electron-detector

subsystem (which was still decohering), was able to offer fewer distinctions.

This effect might be regarded as the "joining together" of decohering paths.

In a similar manner, the emergence of decoherence at a new level of subdivi-

sion can be thought of as "branching" of decohering paths. In that case new

labels are available, so there are multiple paths carrying identical old labels,

which are distinguished from one another by their new labels.

At the end of the day, a double silt experiment may not represent a net

increase in the number of branches. An observer may think in terms of an

increase in the number of branches because before the detection he made sure

to identify the states of the electron and detector on his particular branch.

This identification remained valuable as long as the electron and the detector

remained separately decohering systems, but became less useful during the

detection, when they stopped decohering (and the total number of paths

decreased). After the measurement, when the number of paths increases

again, the best the observer can do with the old information is, based on the

(decoherent) unitary evolution of the joint detector-electron system, calculate

the relative probability that he is on various paths. Of course, he can also

observe the detector and identify his path more completely.

This may be a good point to remind the reader that the number of paths

is not directly related to the size of the Hilbert space, which of course remains

unchanged. Instead it is related to the number of subsystems identified. This

is because the Schmidt orthogonal expansion of a state has far fewer terms

than the expansion into some arbitrary basis, as discussed in Section 3.

I should also remark that it is by no means necessary to make the same

division into subsystems on each path (that is, in each term in the expansion

of the wavefunction). This is in fact quite important, since, for example, the

billiard ball may roll into a furnace on one branch and not on another. On

each of those branches different subdivisions would be the most useful ones.
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7 Other aspects of the proposal

7.1 General discussion - when is C small enough?

One is well advised in physics to demand a clear connection between one's

formalism and real laboratory situations. It is often the case that ambiguities

axe resolved (or problems axe exposed) when the measurement apparatus, for

example, is included in the calculation.

It is when one starts to think this way that I find the Schmidt paths

proposal particularly attractive. The entire content of experimental physics

(and our existence for that matter!) winds up being a matter of correlations

among subsystems. One is always addressing questions like: "How is the

state of one detector correlated with the state of another detector or with a

clock?", or much more complex versions of the same idea.

The Schmidt paths proposal deals explicitly with correlations among sub-

systems. The definition of the Schmidt paths is one which most clearly

exhibits the correlations among the chosen subsystems. For some of these

correlations to have meaning to us, they must develop and evolve in a reg-

ular, reliable way. Therefore it is interesting that the decoherence condition

(small C) is just the condition that these correlations evolve in a unitary

manner. The smaller C is, the more the time evolution of the corresponding

Schnddt orthogonal states is unitary (for both the "system" and the "rest of

the universe" subspaces). Although this unitary evolution might in general

be quite complicated, the unitary constraint still brings a certain level of reg-

ularity to the evolution of the correlations. To come closer to describing our

world the evolution of the Schmidt orthogonal basis must take on a simple

unitary form, at leastrelativeto the other subsystems with respect to which

correlations axe important. I will return to this issue briefly in Section 7.4.

One might ask: how small is "small enough" for C? The answer to that

lies entirely in the physical situation one wishes to discuss. In describing the

classical world around us we find certain correlations to be preserved in an

enormously reliable and regular way, such as the correlation between the key

in our pocket and the lock on our door. In a formalism that purported to

describe that situation, one could in principle calculate the degree of devi-

ation from the known, reliable correlations. One could compare that with

the observed bounds and see if the C in the calculation was small enough.
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Our correlations with other subsystems, such as free neutrons, are much less

reliable, and a good theory would not let a free neutron subsystem decohere

for very long.

7.2 Observables and the Schr/idinger vs. Heisenberg

pictures

It is common in standard quantum mechanics to think of quantum measure-

ments in terms of "observables" represented by Hermitian operators. In a

truly closed system a measurement must just amount to a rearrangement of

the correlations among subsystems. A good measurement apparatus would

be one for which the Schmidt basis for both the apparatus and the measured

subsystem reliably wound up being a very particular basis after the measure-

ment. We would then know that a given detector signal is correlated with

a particle being localized in a definite region, for example. In this way the

interaction with a measurement apparatus is associated with the "collapse of

the wavefunction" onto a particular basis in the subsystem to be measured.

A "predicting subsystem" such as a physicist can predict the outcome of

an encounter between another subsystem and a sufficiently well behaved ap-

paratus by just looking at the expansion of the Schmidt state the subsystem

has (on his path) in the standard basis associated with the apparatus. Some

of the physicist's manipulations, such as the calculation of "expected value"

of a measurement are easily represented (in the usual way) in terms of a

Hermitian matrix who's eignevectors are the special basis vectors associated

with the apparatus (such as the position basis, in the case of a screen or de-

tector). This is exactly what we did in Eqs (19) and (20) in order to discuss

the position of the billiard ball, although we were not discussing quantum

measurements of the position there.

The Hermitian matrix, however, is just a handy tool (of great practical

value!) whereby the effects of an apparatus subsystem may be represented

in a smaller Hilbert space which does not include the apparatus explicitly.

In reality one can only attach meaning to Zbl(t) (the position of billiard

ball number 1), to the extent that one can use it to understand correlations

between the billiard ball and an "apparatus", which is just another subsystem

of the universe. For example, xb1(t) acquires some meaning when, in addition,

one considers the postion of the second billiard ball subsystem (z_1.,),b2(t)).
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Then one can use zbl(_) to predict when collisions will occur, and thus when

_,,),b2(_) will change.

In this way, when one is considering the wavefunction of the "universe"

or of any truly closed system, one often has no use for operators representing

observables. Instead one should just look directly at how the correlations

among subsystems are established or changed. Without the presence of op-

erators (aside from the Hamiltonian), there simply is no Helsenberg picture,

and for this reason I believe that the Sckr6dinger picture is best suited for

many problems in quantum cosmology.

7.3 Is the universe in a pure state?

Formally, the Schmidt paths proposal works just as well if the state of the

universe is represented by a general density matrix p_, (or "mixed state")

rather than a pure state. One simply starts by diagonalizing this density

matrix, and then carries out further subdivisions as before. However, the

probability for each path will include a factor which is an eigenvalue of Pu.

This means that at least one eigenvalue of pt, must be as constant as the

coefficient of the most highly decohering path. In the limit when the eigen-

value corresponding to our path is absolutely constant, our state would be

evolving unitarily in time, and it would be impossible to distinguish between

a pure state universe and a mixed state universe.

7'.4 Measuring "Classicality"

I have attached considerable importance to the need for more regularity than

mere decoherence in order to accurately describe the classical world. (This

point has already been made very well by GeU-Mann and Hurtle I24]).) As

GeU-Mann and Hurtle have remarked, it would be nice to have some quanti-

tative measure of "classicality" which includes this notion of regularity. Such

a measure would not be used to verify the classical behavior of our own world,

so much as to answer the question: "do the wavefunction and Hamiltonian of

our universe describe other classical domains in addition to ours7" Such clas-

sical domains could in principle be radically different from ours, and could

consist of a completely different subdivision of the universe into subsystems.

By considering this question one might be able to understand which (if any)
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aspectsof our physical world are dictated by the need for a classicaldomain.

In thissection I describe brieflyan idea about how to quantify additional

aspectsof classicalbehavior.

The unitary evolution of the Schmidt orthogonal basis provided by the

decoherence condition is not so constraining because the generator of this

evolutioncan in generalhave some arbitrarytime dependence. The generator

of the unitary evolution of the Schmidt orthogonal basis is what one might

want to callthe effectivehamiltonian for that subsystem. One measure

of regularity,then, might be the extent to which the effectiveHsmiltonian

depends on time.

More specifically,H "/! for a particularsubsystem is defined in terms of

the evolution of the Schmidt orthogonal basis as follows:

s,(j,t[H_//(t)[k,t)s,- lim s'(J't[k't+ A _S--t'"--#ih (35)
_t--.o -iAt

One simple way to measure the time dependence of/I "/! is to look at the time

dependence of its eigenvalues, Ai(t). In complete analogy with the definition

C (Eq (1O)) one can define

AA,(t,, t,) (36)
E_(tl,t2) _ _(tl,t,) "

The smaller _i(_1, t2) is, the lessA variesover the time interval[tl,t2].Techni-

callythe A's willhave residualimaginary parts since "sufficientlydecohering"

paths need not have absolutely unitary evolution of the Schmidt orthogonai

basis.It is perhaps simplest to to separate the two issuesand just use the

realpart of A_ in Eq (36), counting on the small C condition to keep the

imaginary parts small. On the other hand, the sizeof the imaginary part

of A might provide a very usefulhandle on the degree of decoherence. It

might be possibleto develop a more comprehensive discussionof classicality

by focusing exclusivelyon the A's and requiring them to be both real and

constant.

The work of Kiibler and Zeh [33!, Zeh [25]. and Joos and Zeh !8! already

represents some interesting development in this direction. In [33] the actual

time evolution equations for the Schmidt orthogonal basis is written down

in terms of the "Hamiltonian of the universe", and in all these papers the
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emphasis is not so much on "decoherence', but on "stability" of the subsys-

tems. In this way their discussion encompasses more aspects of classicality

than just decoherence.

I prefer to mention these questions, but leave them for now. There are

more pressing issues, such as the general validity of the Schmidt paths ap-

proach which must he addressed before the formalism should be developed

further in this direction.

8 Testing the Schmidt paths proposal

There is a major issue which must be resolved if the Schmidt paths proposal

is to be taken seriously. In Section 6 I described how the Schmidt paths

ought to behave in order to describe familiar situations. The question is:

"Do the Schmidt paths actually behave as they should?". In order to have

even minimal confidence in the proposal one should be able to calculate the

Schmidt paths for some familiar, well defined systems, and verify that the

paths behave in the correct way. For example, one should be able to construct

a "measurement apparatus" which reliably causes the Schmidt orthogonal

states of the subsystem to be measured to take on a particular form which is

'qocalJzed" in the parameter that the apparatus measures. Purely classical

subsystems should have Schmidt paths which remain steadily decoherent,

and which correctly describe solutions to the classical equations of motion.

I have already started such a testing project, and have seen the Schmidt

paths proposal work successfully in some extremely simple situations. The

calculations need to be expanded, however, before I would call them a reson-

able test of the Schmidt paths proposal. I will report these results in another

publication once I have expanded the project sufficiently.

One concern I have is that the Schmidt orthogonal decomposition gives

a too highly idealized account of the correlations among subsystems. It is

perfectly conceivable to me that in making po totally diagonal the Schmidt

orthogonal states must take on some contorted form, whereas some less con-

torted, but approximate expression of the correlations may come closer to

addressing the physically important questions.

On the other hand, the Schmidt orthogonai states do appear to provide

the clearest statement of the correlations among subsystems, and these cor-
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relations appear to be a central feature of any discussion of physics. If the

Schmidt paths picture turns out to be wrong, it will be very interesting to

find out what aspect of physics takes such a high precedent, as to force the

correlations among subsystems to take some secondary (presumably approx-

imate) status.

I hope that others will take up the challenge of testing the $chmidt paths

proposal. The computational methods are completely straightforward , and

just involve solving the Schr6dJnger equation and constructing the eigenbases

of the various subsystem density matricies. One well thought out example

in which the Schmidt orthogonal basis does not behave as it should could be

grounds for rejecting this proposal. Whatever the outcome, such an investi-

gation should help clarify the role of correlations in quantum mechanics. The

most complicated issue is how one differentiates "over simplified" examples

from "realistic" examples. Once more calculations are completed and the

mechanisms for decoherence are better understood it should become clearer

how problematical this issue really is.

8.1 Continuum problems

A fairly common concern regarding the Schmidt paths relates to contin-

uum systems, such as a pendulum or free particle. One normally thinks of

the "classical" states of the pendulum, for example, as being the "coherent

states" of the harmonic osciUator. The coherent states do not make an or-

thonormal basis, so it seems hard to imagine them appearing in the Schmidt

orthogonai paths. One thing to remember is that the Schmidt paths for a

pendulum need not be too close to coherent states for the proposal to work.

They just need to be sufficiently localized to reflect physical reality. In partic-

ular, I would expect the extent of localization to depend crucially on the scale

on which the environment interacts coherently with the pendulum. For the

true "coherent states" the scale of localization just depends on the internal

harmonic oscillator parameters, and has nothing to do with any environment.

On a relatedissue,Joos and Zeh {8]have calculatedthe Schmidt orthog-

onal statesfor a %cattering center" in an environment of photons. These

statesturn out to be not well localized,and Joos and Zeh conclude that

Schmidt orthogon_l statesare not usefulin describing continuum phenom-

ena. However for the calculationthey use an "ineffectivescattering"approx-
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imation, which means they are only considering effects on scales smaller than

the coherence scale of the interactions. Because they use this approximation

I am not convinced of their conclusions.

Unruh{34] has emphasized that the Schmidt orthogonal basis is not well

localized in the calculations of rderence Ill} either. But again, their interac-

tion term also appears to be very coherent over the entire range of positions

(q) of the harmonic oscillator they are trying to decohere. The interaction

Hamiltonian involves the same operator in the environment subspace for all

values of q, and only the "effective couplln 8 strength" eq varies from one

position to another.

I agree that the continuum phenomena mentioned here seem to pose a

particular challenge to the Schmidt paths. However, the calculations per-

formed to date are far from conclusive, and the final verdict must await a

more thorough analysis.

8.2 Degenerate eigenvalues

It is well known that matricies with degenerate eigenvalues do not have

uniquely specified eigenbases. If all the eigenvalues of a matrix are degen-

erate, the matrix is proportional to the identity matrix, and it is diagonal

in an!/basis. Small sets of degenerate eigenvalues cause similar (but less

complete) ambiguities. Since the Schmidt orthogonal states are just den-

sitymatrix eigenstates,eigenvaluedegeneracies can cause the Schmidt paths

proposal to be poorly defined.

Strictlyspeaking, in a realisticsituationthe eigenvaluesof p, would only

be degenerate at isolatedinstants in time, as two eigenvalues crossed one

another. These situationswould involve time varying eigenvalues, which

means non-decoherence, and thus the Schmidt orthogonal basis would not

have physicalimportance in these cases.In practice,of course,no eigenvalues

willbe absolutely constant, but rather they will have some range of small

fluctuations. If two neighboring eigenvalues are within the range of small

fluctuationsof one another, they willcross frequently,and it seems possible

that the Schmidt orthogonal basiswould evolve in a highlyirregularmanner.

To some extent the degenerate eigenvalue situationmay reflectphysical

reality.Degenerate eigenvalues in p tend to correspond to higher entropy

(oc -tr(plog(p)), and itis natural to think that itis harder to identifyde-
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cohering subsystems in high entropy situations. On the other hand, the

formalism should be able to handle without dlf_culty a "SchrSrllnger cat"

type experiment with two equally probable (but very classical) outcomes. In

such a situation the decohering paths should branch with equal probabilities,

and that would correspond to some eigenvalues being degenerate.

K_bler and Zeh {33] have calculated the equations of motion for the

Schmidt basis vectors. The equations indeed exhibit a striking singularity

when eigenvalues of the density matrix are degenerate, indicating rapid time

variation. Zeh {25] has made the intriguing conjecture that, in analogy with

crossing energy levels, the eigenvalues actually never cross, but repel one

another. All the while the different subsystems would remain similarly cor-

related, but the correlated sets of subsystem states would become associated

with different eigenvalues as time evolved. If this situation actually occurred,

it would be very interesting, and one might wish to define the Schmidt paths

in terms of continuity of the states rather than the eigenvalues.

8.3 Degenerate eigenwalues as a larger issue

I have raised the degenerate eigenvalue issue here because I believe it might

be a good place to look for trouble in the Schmidt paths proposal. It is

interesting to note another place where the degenerate eigenvalue issue has

already appeared in the literature on decoherence (although the presence

of the corresponding ambiguity was not actually discussed). In one of the

classic papers on decoherence Zurek {10], (in equation (2.15)), considers the

density matrix of what is ej0_ectively a two state system. The two states are

written in terms of an additional subdivision into a spin (a) and a two state

"atom" (,z) subspace:

11) = ll).®ll)o

12) = 12). @ i2)o. (37)

(The notation here isslightlydifferentfrom Zurek's.) Zurek argues that due

to correlationswith an additional environment system, the density matrix

forthistwo state system willbe very nearly diagonal at almost allmoments

in time.

Zurek focuses particular attention on the case where the diagonal ele-

ments of the density matrix are equal. In this case, the density matrix is
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(approximately) proportional to the identity, so the correlations with the

environment do not help one identify a preferred basis, if approximate diag-

onality of the density matrix is what is sought. The density matrix win be

close to diagonal in any basis formed by some unitary transformation of I1)

and t2) (defined in Eq (37)).

Still, there is a reason why the states {[1), 12)} form a preferred basis, and

that has to do with correlations among the spin and the atom in the .further

subdivision of the {11),12)} space. It is only in the {11),12)} basis that the

the spin and the atom are nicely correlated with one another, as depicted in

Eq (37). In any other basis the t1/, ® I1)° and the 12)o ® 12), states would

be mixed together.

It seems a bit worrying that in the Schmidt paths case one does not have

this sort of flexibility in resolving the ambiguity. That is because unless two

eigenvalues are absolutely identical, the Schmidt orthogonal basis is uniquely

defined. If two eigenvalues are merely "dose" the Schmidt paths scheme

allows no choices as to which paths one considers. It remains to be seen if this

consideration can cause serious problems in physically relevant situations.

9 Comparison with the decoherence func-

tional approach

Grifliths [201, Omn6sI21,22,23], and Gall-Mann and Hartle [24] have con-

sidered a "decoherence functional" method for identifying decohering paths

within a wavefunction. In this section I compare the Schmidt paths proposal

with the decoherence functional approach. I will start by describing the de-

coherence functional. In keeping with my preferences, I will describe it in

the Schr6dinger picture, even though it is usually discussed in the Heisenberg

picture.

9.1 Review of the decoherence functional

Just as in Schmidt paths scheme, the subdivision of the Hilbert space into

subspaces (or coarse graining) is crucial. Unlike in the Schmidt paths case

however, the subdivision scheme alone does not specify a particular set of

paths to be considered. In the decoherence functional approach arty path
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can be considered. First let us take the simplest case, where there is a single

subdivision into "system" and "environment". Specifying a path for the

system amounts to specifying a state Ic_(_)), in the system subspace at every

moment in time. From this one can construct the projection operators:

P-.(O- ® i, (3s)

which project onto the particular path in the subspace and leave the environ-

ment unchanged. This path does not specify anything about the environment

subsystem, in contrast to the Schmidt paths which also specify the path of

the environment.

Part of the procedure is to then choose a pa_icular "coarse graining

in time", which amounts to reducing the continuum of projection operators

described in Eq (38) to a discrete set. This is done by selecting the projection

operators at only a discrete set of times. Having made all these choices, one

has a "coarse grained path". It is coarse grained within the HJlbert space

due the system/environment subdivision, and coarse grained in time as well.

Any change to the choice of path, or either of the coarse graining schemes

will result in a different coarse grained path.

Fol]owin 8 the notation of Gel]-Mann and Hartle I label a particular coarse

grained path with [P_] = (P_I (tl), P_ (t2), ..., P_ (tn)), representing the cor-

responding set of projection operators. The a labels the particular path, the

integer subscripts label the time slice, and the integer superscripts represent

the fact that the P's can be chosen from different sets at different times.

As an intermediate step one constructs what I like to call a "path pro-

jected state":

][P,,,],¢_,) -- P_, e-'H'(t'-''-') ... P_, e-'H"(t)-t') P_, e-'H"(t'-t°)I¢,,,to I (39)

This is exactly the state that appears in the discussion surrounding equa-

tions (24) and (25) of reference [24]. The decoherence functional, which is a

functional of two paths [P_,,] and [P,_], is defined as

P([Po,],[Po})-(:[Po,I, (40)

Typically one wants to consider an "exhaustive set of exclusive alternatives"

which means one considers all possible paths made from sets of projection
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operators which obey

Dk r_k k
P_(t) - 1, • o'a - 8_P2 (41)

Q

The paths are said to be decohering if the off diagonal elements of _D are

dose to zero. In that case the diagonal elements of _D give the probabilities

associated with the paths.

What one is doing, in this approach, is choosing a particular path, and re-

peatedly projecting onto it. If the wavefunction describes a subsystem which

follows that path in a decohering manner, almost all of the projections will

be superfluous. One might visualize the situation by considering a billiard

ball roLLing along some classical path. One could put down numerous walls

its way, but as long as each wall had a doorway on that path, the motion of

the ball would be unaffected. However, if you moved just one wall, the ball

would not get through. The walls here are meant to represent the projection

operators.

If one replaced the billiard ball with an electron, the electron wavefunction

would spread out with time, and there would be numerous arrangements of

the walls for which there was some probability of the electron getting through.

This situation would correspond to many off diagonal elements of :D being

non zero, since the path projected states for different paths would have some

overlap.

Of course an isolated billiard ball will spread out just as surely (if not as

quickly) as an electron. One expects that the decoherence of the billiard ball

paths has a lot to do with the different paths being correlated with different

environment states, due to local interactions. The Schmidt paths incorporate

this feature by choosing the paths based on correlations in the first place.

The correlations play a role in the decoherence functional via the I, (the unit

operator in the environment subspace) in Eq (38). The matrix element of

a P,. between any two states will be zero unless the environment parts of

the states have some overlap. This allows the path projected states to have

little overlap among paths where the subsystem is correlated with orthogonal

(or nearly orthogonal) environment states. In this way correlations with the

environment can cause decoherence as defined in the decoherence functional

formalism.
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9.2 Possible problems with the decoherence functional

As with the Schmidt paths proposal, I belive the decoherence functional

needs to prove itself in some well understood calculable systems. There axe

a few possible problem areas which I feel should get particular attention.

It seems likely that the decoherence functional would accurately represent

"truly" decohering paths as such. I am concerned, however, that there are a

number of ways it could falsely represent a path as decohering.

The first issue I wish to raise has to do with the coarse graining in time.

Any realistic physical subsystem has a some small but finite timescaie over

which one must wait for the system to exhibit any change (corresponding,

loosely, to the largest energy eigenstate for which the system has significant

overlap). One can always choose to coarse grain on a much finer timescale

than this minimal one, and define paths on which the system is static. Such a

set of paths would always be highly decohering according to the decoherence

functional, regardless of the true system dynamics. The mathematical con-

tent of the situation is identical to the case of the "watchdog effect", where

the decay of a system can be prevented by frequent enough measurements

(which can be represented by projection operators) [35,36,37].

This extreme example may seem contrived, but I am concerned that this

effect may be present to some degree in any decoherence functional calcula-

tion. One possible way of addressing this issue would be to vary the coarse

graining in time, and require the result to be unaffected.

Another problem could arise when one asks how small is "small enough"

for the off diagonal elements of D to indicate decoherence. Even in cases

where there is no decoherence, the off diagonal elements are going to be

proportional to a product of complex numbers each with magnitude less than

one. The number of factors could well be large, and many of the phases could

be an-correlated. Thus, these off diagonal elements will have a tendency to

be small in any case. This issue might also be resolved by varying the coarse

graining in time, or by some more sophisticated method of determining how

small is really small. For example in the cases where this "random phase"

problem arises, the on diagonal elements of D would also be small, and

maybe that can be factored into the discussion. Care would have to be

taken, however, since for sufficiently finely grained schemes all the individual

diagonal elements of D will be small.
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9.3 Comparison with Schmidt paths

Are the Sehmidt paths too rigid?

One strikin 8 difference between the decoherence functional approach and

the Schmidt paths approach is the number of paths one can consider. In

the Schmidt paths approach, once a particular subdivision scheme (or coarse

graining) is chosen, the particular paths under consideration are fixed. The

paths simply correspond to the terms in the expansion of the wavefunction

of the universe in the Schmidt orthogonal basis states, which are uniquely

determined. In the decoherence functional approach one is much more flexi-

ble, sad this flexibility essential]y corresponds to the freedom to choose any

basis for each of the subsystem. (Note that both approaches have flexibility

in choosing which subsystems (or coarse graining scheme) to consider.)

H the Schmidt paths turn out to describe physics correctly, then the lack

of flexibility could be regarded as "elegance". This elegance also suggests

that the Schmidt paths would ms_ke a more powerful tool, in the further

qunatification of other aspects of classicality, for example. However, if the

SchmJdt paths fail the tests discussed in Section 8, then Schmidt paths pro-

posal would appear to be "too rigid", and the flexibility of the decoherence

functional would be welcome.

Probability sum rules

As discussed in section S, the Schmidt paths always have a well defined

"instantaneous" probability for which the probability sum rules (relating

successive coarse grainings) are exactly obeyed. The issue of decoherence

only comes in when one wants to assign a fixed probability over a period

of time, and it is this assignment which is approximate. In the decoherence

functional approach probabilities are not assigned instantaneously, but only

to a whole history. The degree to which the the sum rules are obeyed is

approximate, and depends on the degree of decoherence.

Technical problems

In section 9.2 I raised concerns that artifacts could prevent D from always

giving clear and correct answers to questions about decoherence. As I men-
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tioned, those issuesmight weUbe resolvable, but I do not be/ive they have

been resolved yet. The possible problems that I have mentioned (in Section

8) for the Schmidt paths proposal also raise serious concerns. Both ideas

need further investigation, with some concrete calculations, in order to es-

tablish their validity (I currently have some of these calculations underway).

It is perhaps heartening that, at least at this stage, the technical weak spots

for each approach appear to be unrelated, between the two approaches.

Coarse graining in time

The intuitive reason for coarse graining in time is that we should not care

about everything that happens on short timescales, as long as it doesn't mess

up what is happening on longer, more relevant timescales. In the Schmidt

paths proposal the paths are defined at all times, but the idea of temporal

coarse graining is incorporated in another way, in the definition of C. The

definition (in Section 4) allows for rapid variations in the density matrix

eigenwdues over short timescales as long as the amplitude is small, without

denying decoherence.

The perspective I take in this paper is that the importance of decoherence,

as well as other aspects of classical behavior, is to cause the correlations

among subsystems to evolve in a regular way. It is possible that we will

learn that C is not the best indicator of this quality (as discussed in Section

7.4). Still, whatever might replace it would probably only demand long terra

regularity in the evolution of correlations. Small, short time fluctuations

about a long term trend would no doubt be tolerated. This tolerance would

again be reflecting a form of coarse graining in time.

10 Conclusions

I have discussed a well defined proposal for how to identify decohering subsys-

tems within a wavefunction (or density matrix) of an isolated system. This

is an important ingredient for identifying classical behavior in fundamentally

quantum systems. The starting point is the exact identification of ,_he corre-

lations among subsystems (which is always a precisely defined procedure). In

order to attach meaning to these correlations one demands that they evolve

in a regular manner. The first step in achieving this regularity is to be able
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to assign definite probabilities to different pates, and this feature is know as

decoherence. To this end, I define the "coherence" function, C, which must be

small for decoherence to occur. Requiring decoherence is shown to be equiv-

alent to demanding unitary evolution of the correlations. Additional aspects

of "classicality" are associated with further simplifications of the evolution

of correlations.

The "Schmidt paths proposal", which I present in this article, differs

in several ways from the "decoherence functional" approach to decoherence.

The Schmidt paths proposal is less flexible, and completely specifies the paths

to be considered, once a subdivision scheme (or coarse graining) is chosen.

This means that it is easier to show that the Schmidt paths proposal is wrong

(if that is the case), but if it is correct, the Schmidt pates approach is more

elesant , and probably more powerful as well.

I have argued that it is crucial that both the decoherence functional and

the Schm/dt paths proposal be tested out in explicit calculations of familiar

physical systems, and I have pointed to possible weaknesses of both ap-

proaches, on which these tests might focus. There have been a few claims

that the Scknlidt paths scheme is already discredited by certain calculations,

but I have discussed why I feel these calculation are not good tests.

The Schmidt paths proposal takes account of the correlations among sub-

systems in a particularly precise way, and these correlations play a tremen-

dously important role in almost every aspect of physics. If the Schmidt

paths approach is shown to be successful, it will expand our understanding

of quantum mechanics, particularly as applied to cosmological situations. If

the Schmidt paths proposal fails, then by understandin 8 the nature of its

failure we will probably still learn an important lesson about the role of

correlations in quantum physics.
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